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A B S T R A C T

Currently, there are no effective drug therapies for Alzheimer’s disease (AD). Thus, exploring new non-phar-
macological strategies, including the neuroprotective mechanisms of aerobic exercise, to enhance therapeutic
treatment of AD are essential. Previous studies have shown that the beneficial efficiency of aerobic exercise in
the prevention and treatment of AD is time-sensitive, but its mechanism is not clear. Recent studies revealed that
the water channel protein aquaporin 4 (AQP4) mediates the glymphatic system to clear interstitial solutes,
including β-amyloid, from the brain. More recently, voluntary exercise has been shown to promote glymphatic
clearance function in mice. However, glymphatic function is reduced in the mid- or late-stage of AD due to the
loss of the polarity distribution of AQP4. Based on this, we hypothesized that AQP4-mediated glymphatic system
clearance function is a determining factor for time-sensitive treatment of aerobic exercise in patients with AD.
While further studies are necessary, the potential results are important for elucidating the new pro-cognitive
mechanism of aerobic exercise, but also help to establish a new strategy for treatment of AD via regulation of
glymphatic clearance function by targeting AQP4.

Background

Aerobic exercise, such as swimming, running and bicycling, are low
to high intensity physical exercises that depends primarily on the
aerobic energy-generating process [1]. There are a number of re-
cognized benefits in regular aerobic exercise. For instance, strength-
ening cardio-pulmonary function, increasing the total number of red
blood cells and facilitating transport of oxygen [2–5]. Indeed, aerobic
exercise has been shown to reduce the incidence of aeroerlipidemia,
atherosclerosis and diabetes [6–7].

Aerobic exercise also has multiple protective effects on the brain,
such as increasing cerebral blood flow, oxygen uptake and glucose
utilization, improvement of growth factor production, angiogenesis and
neurogenesis, and decreasing oxidative stress [8–10]. Aerobic exercise
can also improve mental health, reduce stress, lower the incidence of
depression, and increase cognitive capacity [11–12]. Several popula-
tion-based cohort studies found that aerobic exercise reduces the po-
tential risk for Alzheimer’s disease (AD) [13–14]. Clinical investigations
also indicate that exercise could improve the cognitive function of AD

patients, especially in the early stage, but do not mitigate memory
deficits in patients with advanced AD [15].

In agreement with epidemiological and clinical studies, animal ex-
periments demonstrate that aerobic training, such as wheel running or
treadmill running, can reduce memory impairment of AD transgenic
mice, Aβ deposition in the cortex and hippocampus, increase the
number of cortical capillaries and improve brain perfusion [16]. An
early study from our laboratory reported that voluntary exercise
counteracts the impairment of working memory ability in mice in-
tracerebroventricularly injected Aβ25-35, which is associated with re-
ducing oxidative stress and glial inflammatory reaction, and increasing
hippocampal angiogenesis [10]. However, a subsequent study revealed
that aerobic exercise, combined with antioxidant therapy, could not
mitigate the middle-stage AD-like pathophysiology processes of APP/
PS1 mice without alleviation of spatial cognitive malfunction, oxidative
stress, glial inflammatory response, synaptic loss, and Aβ load [17].

The aforementioned evidences highly suggest the timeliness of
aerobic exercise in the prevention and treatment of AD. Aerobic ex-
ercise successfully prevents or delays the occurrence and development
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of AD, but there are no obvious therapeutic effects on patients in the
middle and late stages of AD. The mechanism underlying timeliness of
aerobic exercise for treatment of AD needs further analysis.

The glymphatic system in efficient clearance of interstitial waste
solutes from the brain

Abnormal deposition of Aβ and Tau in the brain is the core patho-
logical changes of AD [18]. Sporadic AD constitutes the majority of all
AD cases, but lacks a genetic mutation associated with the production of
Aβ [18]. Therefore enhancing clearance of Aβ from the brain is cur-
rently the primary treatment strategy for AD. It is well known that the
brain clears extracellular Aβ through various mechanisms, including
uptake of neurons and glial cells, enzymatic degradation and elimina-
tion, and transportation crossing the blood-brain-barrier (BBB) and
blood-cerebrospinal fluid barrier [18]. Nevertheless, there has been
increasing evidences in recent years supporting the glymphatic system
removing a major proportion of Aβ, Tau protein and other metabolites
from the brain parenchyma [19].

The glymphatic system, also termed as paravascular pathway, is
located in the narrow gap between small vascular adventitia and vas-
cular end feet of astrocytes [20]. In comparison with the BBB composed
by tight junctions of capillary endothelial cells, the glymphatic system
has greater permeability, which contributes to the clearance of mac-
romolecules from the brain parenchyma [20]. Recent studies demon-
strated that the glymphatic system links the dural lymphatic vessels,
which eventually drains toward the deep cervical lymph nodes [21–23].
Functional studies further demonstrated that the clearance capacity of
the glymphatic system is associated with the fluidity of interstitial fluid
(ISF) [24]. Previous studies found that astrocytes undergo contraction
during the sleep state, which enlarges the extracellular space and im-
proves ISF flow, in turn facilitating the clearance of macromolecular
metabolic proteins from the brain [25].

Aerobic exercise increases heart rate, cerebral pulse pressure and
perfusion flow, thereby enhancing brain interstitial fluid flow, which
potentially promotes the glymphatic system to clear Aβ and Tau in the
brain [26–27]. This hypothesis is proven by a recent study revealing
that voluntary exercise enhances glymphatic clearance of amyloid beta
in aged mice [26]. Furthermore, another study demonstrated that vo-
luntary exercise increases the influx of CSF tracers into the brain of
young, freely behaving, and awake mice relative to sedentary mice
[27]. Together, all these evidences suggest that glymphatic clearance
might mediate neuroprotective effects of aerobic exercise.

Aquaporin 4-mediated glymphatic clearance function

Further studies also show that the clearance function of the glym-
phatic system depends on astroglial water channel aquaporin 4 (AQP4)
that lines the paravascular CSF pathways [28–30]. AQP4, the most
abundant water channel in the brain, is crucial for maintaining brain
water homeostasis [31,32]. We demonstrated that AQP4 gene knockout
(AQP4-/-) in mice results in slightly increased brain water content, re-
duced CSF production rate, and delayed postnatal brain water uptake
[33–34]. AQP4-/- mice exhibit slowed CSF influx from the subarachnoid
space into the brain parenchyma, as well as ISF outflow into the sub-
arachnoid space again [28]. Apart from maintaining brain water bal-
ance, AQP4 facilitates ISF entering into astrocyte processes surrounding
the synapses, which might drive astrocyte Ca2+ signaling transduction
and reuptake of K+ and glutamate, thus regulating synaptic plasticity
[35,36]. AQP4 is also involved in the regulation of neurotrophic factor-
dependent synaptic plasticity [37]. Adult AQP4-/- mice exhibit defects
in consolidation memory and location-specific object memory [38,39].

Furthermore, AQP4 is necessary for the glymphatic system to clear
Aβ and Tau [28–30]. Adult AQP4-/- mice show a ∼45% reduction in
clearance of intrastriatal injected radio-labeled Aβ1-40, compared with
aged-match wild-type (WT) mice [28]. In order to define the function of

AQP4 in AD pathology, we successfully established AQP4-/-/APP/PS1
mice. Twelve-month-old AQP4-/-/APP/PS1 mice exhibit heightened
spatial learning and memory impairment along with increased Aβ
plaques deposition, amyloid angiopathy, synaptic protein loss and
atrophy of astrocytes in the hippocampus and cortex [30]. This revealed
a mitigating role of AQP4 in Aβ pathogenesis, suggesting that reg-
ulating the glymphatic system via targeting at AQP4 may be an effec-
tive therapeutic strategy for clearing soluble Aβ in the brain of patients
with AD.

Previous studies have indicated that perivascular AQP4 polarization
is the structural basis of the glymphatic clearance function. Astrocytes
are activated, causing abnormal expression of AQP4 at the astrocyte
soma and presynaptic processes in the brain of aged mice, AD mouse
model or following brain trauma injuries [29,40,41]. The mislocaliza-
tion of AQP4 disrupts the high expression feature of AQP4 along blood
vessels and under the pia mater, impairing astroglial water flux, which
would subsequently reduce the clearance efficiency of interstitial so-
luble Aβ and Tau from the brain parenchyma [41]. Consistent with
animal studies, human brain research has revealed that abnormal polar
expression of AQP4 is age-dependent, and closely associated with the
aggregation of Aβ and Tau [42]. Recently, a few literature has reported
that variations in the AQP4 gene may modulate the progression of
cognitive decline in AD and relationship between sleep and brain Aβ
burden [43,44].

Hypothesis

Based on the above analysis and previous work, we believe that
glymphatic clearance function is a critical factor for the time-sensitive
treatment of aerobic exercise for patients with AD. Under normal
physiological conditions, or the early stage of AD, aerobic exercise in-
creases cerebral arterial pulsation and enhances rapid transport of
water from the extracellular space into the paravascular space via
perivascular polarization of AQP4. Subsequently, this might facilitate
the clearance of toxic solutes, including Aβ and Tau from the brain
parenchyma (Fig. 1A-B). In contrast, in the mid- or late-stages of AD,
glymphatic clearance function is impaired due to loss of AQP4 polar-
ization caused by reactive astrogliosis, which would destroy the neu-
roprotective mechanism of aerobic exercise (Fig. 1C). To test this hy-
pothesis, it would be interesting to compare improving effects of
aerobic exercise on the glymphatic clearance function between AQPP/
PS1 and AQP4-/-/APP/PS1 mice at various ages.

In summary, as the most common neurodegenerative disease, AD
has an enormous negative impact on society, patients and their families.
Targeting at AQP4 may serve as a prospective strategy aimed at this
catastrophic disease. Therefore, further studies are necessary to explore
the contribution of AQP4 mediated glymphatic clearance function in
AD pathology, and find corresponding new therapeutic drugs and
methods.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.mehy.2018.07.016.
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Fig. 1. Summary of the clearance function of glymphatic system. A. Under basal condition, the polarity distribution of AQP4, together with arteriopalmus, pushes
CSF into the brain parenchyma via periarterial pathways. Wastes are washed out from the interstitial space within the veins. B. During aerobic exercise, arter-
iopalmus accelerates, and pushes additional CSF into the brain parenchyma. Velocity and the volume of flow are both increased. After an extended period of aerobic
exercise, the expression and polarity distribution of AQP4 are both increased. As a result, the clearance function of CSF is enhanced. C. In AD, glymphatic function is
reduced due to the accumulation of toxic proteins and the loss of the polarity distribution of AQP4. CSF flow becomes turbulent, resulting in toxic product
accumulation.
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